為量化瀝青混合料集料之間的接觸關系,提出了一種基于數字圖像的瀝青混合料集料接觸分析方法.以AC20型瀝青混合料為例,對72個車轍板試件切片圖像進行處理,得到每個切片上大于2.36 mm集料的接觸數量及集料特征;通過統(tǒng)計分析,得到AC20型瀝青混合料接觸對總體分布、各檔集料的接觸對分布及單顆集料接觸數分布規(guī)律.通過對AC20型瀝青混合料接觸狀況的量化分析,可將接觸特征作為混合料級配設計的參考因素,指導級配設計.
精密絎磨管的化學成分有碳C、硅Si、錳Mn、硫S、磷P、鉻Cr精密絎磨管的推廣應用對節(jié)約鋼材,提高加工工效,減少加工工序或設備投資有重要意義,可以節(jié)約 費用和加工工時,提高生產量和材料利用率,同時有利于提高產品質量,降低成本,對提高經濟效益有重要意義。
絎磨管是一種通過冷拔或熱軋?zhí)幚砗蟮囊环N高精密的鋼管材料。由于精密鋼管內外壁無氧化層、承受高壓無泄漏、高精度、高光潔度、冷彎不變形、擴口、壓扁無裂縫等有點,所以主要用來生產氣動或液壓元件的產品,如氣缸或油缸,可以是無縫管。絎磨管的化學成分有碳C、硅Si、錳Mn、硫S、磷P、鉻Cr。
45#絎磨管采用加工工藝油缸管采用滾壓加工,由于表面層留有表面殘余壓應力,有助于表面微小裂紋的封閉,阻礙侵蝕作用的擴展。從而提高表面抗腐蝕能力,并能延緩疲勞裂紋的產生或擴大,因而提高絎磨管疲勞強度。通過滾壓成型,滾壓表面形成一層冷作硬化層,減少了磨削副接觸表面的彈性和塑性變形,從而提高了絎磨管內壁的耐磨性,同時避免了因磨削引起的燒傷。滾壓后,表面粗糙度值的減小,可提高配合性質。
為了研究石灰?guī)r和玄武巖集料的微納觀特征,利用原子力顯微鏡(AFM)測試了其表面紋理與黏附力,并導入SPSS軟件校驗了數據的穩(wěn)定性和區(qū)分度,對比分析了石灰?guī)r與玄武巖集料在微納觀特征上的異同.結果表明:AFM可有效測試集料的表面紋理,數據穩(wěn)定性強,區(qū)分度高,但測試集料的黏附力時,數據的隨機性大,存在著一定的誤差;石灰?guī)r表面紋理粗糙、黏附力峰值較高、分布比較隨機,與瀝青之間的黏結呈"散點式"分布,而玄武巖表面紋理光滑、具有流紋結構,黏附力峰值較低、分布比較均勻,與瀝青之間的黏結呈"整體式"分布.
大口徑絎磨管滾壓加工是一種無切屑加工,在常溫下利用金屬的塑性變形,使工件表面的微觀不平度輾平從而達到改變表層結構、機械特性、形狀和尺寸的目的。絎磨油缸管采用滾壓加工,由于表面層留有表面殘余壓應力,有助于表面微小裂紋的封閉,阻礙侵蝕作用的擴展。從而提高表面抗腐蝕能力,并能延緩疲勞裂紋的產生或擴大,因而提高絎磨油缸管疲勞強度。通過滾壓成型,滾壓表面形成一層冷作硬化層,減少了磨削副接觸表面的彈性和塑性變形,從而提高了絎磨油缸管內壁的耐磨性,同時避免了因磨削引起的燒傷。滾壓后,表面粗糙度值的減小,可提高配合性質。 滾壓加工是一種無切屑加工,在常溫下利用金屬的塑性變形,使工件表面的微觀不平度輾平從而達到改變表層結構、機械特性、形狀和尺寸的目的。因此這種方法可同時達到光整加工及強化兩種目的,是磨削無法做到的。
無論用何種加工方法加工,在零件表面總會留下微細的凸凹不平的刀痕,出現交錯起伏的峰谷現象,
滾壓加工原理:它是一種壓力光整加工,是利用金屬在常溫狀態(tài)的冷塑性特點,利用滾壓工具對工件表面施加一定的壓力,使工件表層金屬產生塑性流動,填入到原始殘留的低凹波谷中,而達到工件表面粗糙值降低。由于被滾壓的表層金屬塑性變形,使表層組織冷硬化和晶粒變細,形成致密的纖維狀,并形成殘余應力層,硬度和強度提高,從而改善了工件表面的耐磨性、耐蝕性和配合性。滾壓是一種無切削的塑性加工方法。
舟山液壓缸筒加工
??勢,界面區(qū)得到增強,明顯優(yōu)于普通混凝土.為研究石灰石粉細度對水泥漿體流變特性的影響,選用旋轉黏度計測定了水泥-石灰石粉漿體流變性能,采用Herschel-Bulkley模型對漿體流變曲線進行擬合得到相關流變參數.結果表明:隨石灰石粉細度增加,水泥漿體結構新建能和稠度減小,動態(tài)屈服應力增大;增加石灰石粉細度會減小水泥漿體的觸變性,延緩水泥漿體觸變性的發(fā)展,促進水泥漿體瞬時結構恢復能力;隨測試時間增加,水泥-石灰石粉漿體結構新建能減小,稠度和動態(tài)屈服應力增大.