一、電流放大
下面的分析僅對于NPN型硅三極管。如上圖所示,我們把從基極B流至發(fā)射極E的電流叫做基極電流Ib;把從集電極C流至發(fā)射極E的電流叫做集電極電流 Ic。這兩個電流的方向都是流出發(fā)射極的,所以發(fā)射極E上就用了一個箭頭來表示電流的方向。三極管的放大作用就是:集電極電流受基極電流的控制(假設(shè)電源 能夠提供給集電極足夠大的電流的話),并且基極電流很小的變化,會引起集電極電流很大的變化,且變化滿足一定的比例關(guān)系:集電極電流的變化量是基極電流變 化量的β倍,即電流變化被放大了β倍,所以我們把β叫做三極管的放大倍數(shù)(β一般遠大于1,例如幾十,幾百)。如果我們將一個變化的小信號加到基極跟發(fā)射 極之間,這就會引起基極電流Ib的變化,Ib的變化被放大后,導致了Ic很大的變化。如果集電極電流Ic是流過一個電阻R的,那么根據(jù)電壓計算公式 U=R*I 可以算得,這電阻上電壓就會發(fā)生很大的變化。我們將這個電阻上的電壓取出來,就得到了放大后的電壓信號了。
二、偏置電路
三極管在實際的放大電路中使用時,還需要加合適的偏置電路。這有幾個原因。首先是由于三極管BE結(jié)的非線性(相當于一個二極管),基極電流必須在輸入電壓 大到一定程度后才能產(chǎn)生(對于硅管,常取0.7V)。當基極與發(fā)射極之間的電壓小于0.7V時,基極電流就可以認為是0。但實際中要放大的信號往往遠比 0.7V要小,如果不加偏置的話,這么小的信號就不足以引起基極電流的改變(因為小于0.7V時,基極電流都是0)。如果我們事先在三極管的基極上加上一 個合適的電流(叫做偏置電流,上圖中那個電阻Rb就是用來提供這個電流的,所以它被叫做基極偏置電阻),那么當一個小信號跟這個偏置電流疊加在一起時,小 信號就會導致基極電流的變化,而基極電流的變化,就會被放大并在集電極上輸出。另一個原因就是輸出信號范圍的要求,如果沒有加偏置,那么只有對那些增加的 信號放大,而對減小的信號無效(因為沒有偏置時集電極電流為0,不能再減小了)。而加上偏置,事先讓集電極有一定的電流,當輸入的基極電流變小時,集電極 電流就可以減??;當輸入的基極電流增大時,集電極電流就增大。這樣減小的信號和增大的信號都可以被放大了。
三、開關(guān)作用
下面說說三極管的飽和情況。像上面那樣的圖,因為受到電阻 Rc的限制(Rc是固定值,那么最大電流為U/Rc,其中U為電源電壓),集電極電流是不能無限增加下去的。當基極電流的增大,不能使集電極電流繼續(xù)增大 時,三極管就進入了飽和狀態(tài)。一般判斷三極管是否飽和的準則是:Ib*β〉Ic。進入飽和狀態(tài)之后,三極管的集電極跟發(fā)射極之間的電壓將很小,可以理解為 一個開關(guān)閉合了。這樣我們就可以拿三極管來當作開關(guān)使用:當基極電流為0時,三極管集電極電流為0(這叫做三極管截止),相當于開關(guān)斷開;當基極電流很 大,以至于三極管飽和時,相當于開關(guān)閉合。如果三極管主要工作在截止和飽和狀態(tài),那么這樣的三極管我們一般把它叫做開關(guān)管。
四、工作狀態(tài)
如果我們在上面這個圖中,將電阻Rc換成一個燈泡,那么當基極電流為0時,集電極電流為0,燈泡滅。如果基極電流比較大時(大于流過燈泡的電流除以三極管 的放大倍數(shù) β),三極管就飽和,相當于開關(guān)閉合,燈泡就亮了。由于控制電流只需要比燈泡電流的β分之一大一點就行了,所以就可以用一個小電流來控制一個大電流的通 斷。如果基極電流從0慢慢增加,那么燈泡的亮度也會隨著增加(在三極管未飽和之前)。
半導體三極管也稱為晶體三極管,可以說它是電子電路中最重要的器件。它最主要的功能是電流放大和開關(guān)作用。三極管顧名思義具有三個電極。二極管是由一個PN結(jié)構(gòu)成的,而三極管由兩個PN結(jié)構(gòu)成,共用的一個電極成為三極管的基極(用字母b表示)。其他的兩個電極成為集電極(用字母c表示)和發(fā)射極(用字母e表示)。由于不同的組合方式,形成了一種是NPN型的三極管,另一種是PNP型的三極管。
三極管的種類很多,并且不同型號各有不同的用途。三極管大都是塑料封裝或金屬封裝,常見三極管的外觀,有一個箭頭的電極是發(fā)射極,箭頭朝外的是NPN型三極管,而箭頭朝內(nèi)的是PNP型。實際上箭頭所指的方向是電流的方向。
電子制作中常用的三極管有90××系列,包括低頻小功率硅管9013(NPN)、9012(PNP),低噪聲管9014(NPN),高頻小功率管9018(NPN)等。它們的型號一般都標在塑殼上,而樣子都一樣,都是TO-92標準封裝。在老式的電子產(chǎn)品中還能見到3DG6(低頻小功率硅管)、3AX31(低頻小功率鍺管)等,它們的型號也都印在金屬的外殼上。我國生產(chǎn)的晶體管有一套命名規(guī)則,電子工程技術(shù)人員和電子愛好者應(yīng)該了解三極管符號的含義。
符號的第一部分“3”表示三極管。符號的第二部分表示器件的材料和結(jié)構(gòu):A——PNP型鍺材料;B——NPN型鍺材料;C——PNP型硅材料;D——NPN型硅材料。符號的第三部分表示功能:U——光電管;K——開關(guān)管;X——低頻小功率管;G——高頻小功率管;D——低頻大功率管;A——高頻大功率管。另外,3DJ型為場效應(yīng)管,BT打頭的表示半導體特殊元件。
三極管最基本的作用是放大作用,它可以把微弱的電信號變成一定強度的信號,當然這種轉(zhuǎn)換仍然遵循能量守恒,它只是把電源的能量轉(zhuǎn)換成信號的能量罷了。三極管有一個重要參數(shù)就是電流放大系數(shù) b。當三極管的基極上加一個微小的電流時,在集電極上可以得到一個是注入電流b 倍的電流,即集電極電流。集電極電流隨基極電流的變化而變化,并且基極電流很小的變化可以引起集電極電流很大的變化,這就是三極管的放大作用。
三極管還可以作電子開關(guān),配合其它元件還可以構(gòu)成振蕩器。
Z304三極管的主要參數(shù)及極性判別
1. 常用小功率三極管的主要參數(shù)
常用小功率三極管的主要參數(shù),參見表B311。
三極管電極和管型的判別
(1) 目測法
① 管型的判別
一般,管型是NPN還是PNP應(yīng)從管殼上標注的型號來辨別。依照部頒標準,三極管型號的第二位(字母),A、C表示PNP管,B、D表示NPN管,例如:
3AX 為PNP型低頻小功率管 3BX 為NPN型低頻小功率管
3CG 為PNP型高頻小功率管 3DG 為NPN型高頻小功率管
3AD 為PNP型低頻大功率管 3DD 為NPN型低頻大功率管
3CA 為PNP型高頻大功率管 3DA 為NPN型高頻大功率管
此外有國際流行的9011~9018系列高頻小功率管,除9012和9015為PNP管外,其余均為NPN型管。
② 管極的判別
常用中小功率三極管有金屬圓殼和塑料封裝(半柱型)等外型,圖T305介紹了三種典型的外形和管極排列方式。
(2) 用萬用表電阻檔判別
三極管內(nèi)部有兩個PN結(jié),可用萬用表電阻檔分辨e、b、c三個極。在型號標注模糊的情況下,也可用此法判別管型。
① 基極的判別
判別管極時應(yīng)首先確認基極。對于NPN管,用黑表筆接假定的基極,用紅表筆分別接觸另外兩個極,若測得電阻都小,約為幾百歐~幾千歐;而將黑、紅兩表筆對調(diào),測得電阻均較大,在幾百千歐以上,此時黑表筆接的就是基極。PNP管,情況正相反,測量時兩個PN結(jié)都正偏的情況下,紅表筆接基極。
實際上,小功率管的基極一般排列在三個管腳的中間,可用上述方法,分別將黑、紅表筆接基極,既可測定三極管的兩個PN結(jié)是否完好(與二極管PN結(jié)的測量方法一樣),又可確認管型。
② 集電極和發(fā)射極的判別
確定基極后,假設(shè)余下管腳之一為集電極c,另一為發(fā)射極e,用手指分別捏住c極與b極(即用手指代替基極電阻Rb)。同時,將萬用表兩表筆分別與c、e接觸,若被測管為NPN,則用黑表筆接觸c極、用紅表筆接e極(PNP管相反),觀察指針偏轉(zhuǎn)角度;然后再設(shè)另一管腳為c極,重復以上過程,比較兩次測量指針的偏轉(zhuǎn)角度,大的一次表明IC大,管子處于放大狀態(tài),相應(yīng)假設(shè)的c、e極正確。
三極管性能的簡易測量
(1) 用萬用表電阻檔測ICEO和β
基極開路,萬用表黑表筆接NPN管的集電極c、紅表筆接發(fā)射極e(PNP管相反),此時c、e間電阻值大則表明ICEO小,電阻值小則表明ICEO大。
用手指代替基極電阻Rb,用上法測c、e間電阻,若阻值比基極開路時小得多則表明 β值大。
(2) 用萬用表hFE檔測β
有的萬用表有hFE檔,按表上規(guī)定的極型插入三極管即可測得電流放大系數(shù)β,若β很小或為零,表明三極管己損壞,可用電阻檔分別測兩個PN結(jié),確認是否有擊穿或斷路。
4.半導體三極管的選用
選用晶體管一要符合設(shè)備及電路的要求,二要符合節(jié)約的原則。根據(jù)用途的不同,一般應(yīng)考慮以下幾個因素:工作頻率、集電極電流、耗散功率、電流放大系數(shù)、反向擊穿電壓、穩(wěn)定性及飽和壓降等。這些因素又具有相互制約的關(guān)系,在選管時應(yīng)抓住主要矛盾,兼顧次要因素。
低頻管的特征頻率fT一般在2.5MHz以下,而高頻管的fT都從幾十兆赫到幾百兆赫甚至更高。選管時應(yīng)使fT為工作頻率的3~10倍。原則上講,高頻管可以代換低頻管,但是高頻管的功率一般都比較小,動態(tài)范圍窄,在代換時應(yīng)注意功率條件。
一般希望β選大一些,但也不是越大越好。β太高了容易引起自激振蕩,何況一般β高的管子工作多不穩(wěn)定,受溫度影響大。通常β多選40~100之間,但低噪聲高β值的管子(如1815、9011~9015等),β值達數(shù)百時溫度穩(wěn)定性仍較好。另外,對整個電路來說還應(yīng)該從各級的配合來選擇β。例如前級用β高的,后級就可以用β較低的管子;反之,前級用β較低的,后級就可以用β較高的管子。
集電極-發(fā)射極反向擊穿電壓UCEO應(yīng)選得大于電源電壓。穿透電流越小,對溫度的穩(wěn)定性越好。普通硅管的穩(wěn)定性比鍺管好得多,但普通硅管的飽和壓降較鍺管為大,在某些電路中會影響電路的性能,應(yīng)根據(jù)電路的具體情況選用,選用晶體管的耗散功率時應(yīng)根據(jù)不同電路的要求留有一定的余量。
對高頻放大、中頻放大、振蕩器等電路用的晶體管,應(yīng)選用特征頻率fT高、極間電容較小的晶體管,以保證在高頻情況下仍有較高的功率增益和穩(wěn)定性。
光敏三極管在原理上類似于晶體管,只是它的集電結(jié)為光敏二極管結(jié)構(gòu)。它的等效電路見圖T313。由于基極電流可由光敏二極管提供,故一般沒有基極外引線(有基極外引線的產(chǎn)品便于調(diào)整靜態(tài)工作點)。
如在光敏三極管集電極c和發(fā)射極e之間加電壓,使集電結(jié)反偏,則在無光照時,c、e 間只有漏電流ICEO,稱為暗電流,大小約為0.3 μA。有光照時將產(chǎn)生光電流IB,同時IB被“放大”形成集電極電流IC,大小在幾百微安到幾毫安之間。
光敏三極管的輸出特性和晶體管類似,只是用入射光的照度來代替晶體管輸出特性曲線中的IB。光敏三極管制成達林頓形式時,可獲得很大的輸出電流而能直接驅(qū)動某些繼電器。
光敏三極管的缺點是響應(yīng)速度(約5 ~ 10μs)比光敏二極管(幾百毫微秒)慢,轉(zhuǎn)換線性差,在低照度或高照度時,光電流放大系數(shù) 值變小。
使用光敏三極管時,除了管子實際運行時的電參數(shù)不能超限外,還應(yīng)考慮入射光的強度是否恰當,其光譜范圍是否合適。過強的入射光將使管芯的溫度上升,影響工作的穩(wěn)定性,不合光譜的入射光,將得不到所希望的光電流。例如:硅光敏三極管的光譜響應(yīng)范圍為0.4 ~ 1.1 μm波長的光波,若用熒光燈作光源,結(jié)果就很不理想。
另外,在實際選用光敏三極管時,應(yīng)注意按參數(shù)要求選擇管型。如要求靈敏度高,可選用達林頓型光敏三極管;如要求響應(yīng)時間快,對溫度敏感性小,就不選用光敏三極管而選用光敏二極管。探測暗光一定要選擇暗電流小的管子,同時可考慮有基極引出線的光敏三極管,通過偏置取得合適的工作點,提高光電流的放大系數(shù)。例如,探測10-3勒克斯的弱光,光敏三極管的暗電流必須小于0.1 nA。
晶體三極管(以下簡稱三極管)按材料分有兩種:鍺管和硅管。而每一種又有NPN和PNP兩種結(jié)構(gòu)形式,但使用最多的是硅NPN和PNP兩種三極管,兩者除了電源極性不同外,其工作原理都是相同的,下面僅介紹NPN硅管的電流放大原理。
NPN管它是由2塊N型半導體中間夾著一塊P型半導體所組成,發(fā)射區(qū)與基區(qū)之間形成的PN結(jié)稱為發(fā)射結(jié),而集電區(qū)與基區(qū)形成的PN結(jié)稱為集電結(jié),三條引線分別稱為發(fā)射極e、基極b和集電極。當b點電位高于e點電位零點幾伏時,發(fā)射結(jié)處于正偏狀態(tài),而C點電位高于b點電位幾伏時,集電結(jié)處于反偏狀態(tài),集電極電源Ec要高于基極電源Ebo。
在制造三極管時,有意識地使發(fā)射區(qū)的多數(shù)載流子濃度大于基區(qū)的,同時基區(qū)做得很薄,而且,要嚴格控制雜質(zhì)含量,這樣,一旦接通電源后,由于由于發(fā)射結(jié)正偏,,發(fā)射區(qū)的多數(shù)載流子(電子)極基區(qū)的多數(shù)載流子(控穴)很容易地截越過發(fā)射結(jié)構(gòu)互相向反方各擴散,但因前者的濃度基大于后者,所以通過發(fā)射結(jié)的電流基本上是電子流,這股電子流稱為發(fā)射極電流Ie。由于基區(qū)很薄,加上集電結(jié)的反偏,注入基區(qū)的電子大部分越過集電結(jié)進入集電區(qū)而形成集電集電流Ic,只剩下很少(1-10%)的電子在基區(qū)的空穴進行復合,被復合掉的基區(qū)空穴由基極電源Eb重新補紀念給,從而形成了基極電流Ibo根據(jù)電流連續(xù)性原理得:Ie=Ib+Ic這就是說,在基極補充一個很小的Ib,就可以在集電極上得到一個較大的Ic,這就是所謂電流放大作用,Ic與Ib是維持一定的比例關(guān)系,即:β1=Ic/Ib式中:β--稱為直流放大倍數(shù),集電極電流的變化量△Ic與基極電流的變化量△Ib之比為:β=△Ic/△Ib式中β--稱為交流電流放大倍數(shù),由于低頻時β1和β的數(shù)值相差不大,所以有時為了方便起見,對兩者不作嚴格區(qū)分,β值約為幾十至一百多。三極管是一種電流放大器件,但在實際使用中常常利用三極管的電流放大作用,通過電阻轉(zhuǎn)變?yōu)殡妷悍糯笞饔谩?/span>
晶體三極管 - 主要作用
晶體三極管
三極管是一種控制元件,主要用來控制電流的大小,以共發(fā)射極接法為例(信號從基極輸入,從集電極輸出,發(fā)射極接地),當基極電壓UB有一個微小的變化時,基極電流IB也會隨之有一小的變化,受基極電流IB的控制,集電極電流IC會有一個很大的變化,基極電流IB越大,集電極電流IC也越大,反之,基極電流越小,集電極電流也越小,即基極電流控制集電極電流的變化。但是集電極電流的變化比基極電流的變化大得多,這就是三極管的放大作用。IC 的變化量與IB變化量之比叫做三極管的放大倍數(shù)β(β=ΔIC/ΔIB, Δ表示變化量。),三極管的放大倍數(shù)β一般在幾十到幾百倍。
三極管在放大信號時,首先要進入導通狀態(tài),即要先建立合適的靜態(tài)工作點,也叫建立偏置 ,否則會放大失真。
在三極管的集電極與電源之間接一個電阻,可將電流放大轉(zhuǎn)換成電壓放大:當基極電壓UB升高時,IB變大,IC也變大,IC 在集電極電阻RC的壓降也越大,所以三極管集電極電壓UC會降低,且UB越高,UC就越低,ΔUC=ΔUB。
晶體三極管 - 主要參數(shù)
晶體三極管
1、直流參數(shù)
(1)集電極一基極反向飽和電流Icbo,發(fā)射極開路(Ie=0)時,基極和集電極之間加上規(guī)定的反向電壓Vcb時的集電極反向電流,它只與溫度有關(guān),在一定溫度下是個常數(shù),所以稱為集電極一基極的反向飽和電流。良好的三極管,Icbo很小,小功率鍺管的Icbo約為1~10微安,大功率鍺管的Icbo可達數(shù)毫安,而硅管的Icbo則非常小,是毫微安級。
(2)集電極一發(fā)射極反向電流Iceo(穿透電流)基極開路(Ib=0)時,集電極和發(fā)射極之間加上規(guī)定反向電壓Vce時的集電極電流。Iceo大約是Icbo的β倍即Iceo=(1+β)IcbooIcbo和Iceo受溫度影響極大,它們是衡量管子熱穩(wěn)定性的重要參數(shù),其值越小,性能越穩(wěn)定,小功率鍺管的Iceo比硅管大。
(3)發(fā)射極---基極反向電流Iebo集電極開路時,在發(fā)射極與基極之間加上規(guī)定的反向電壓時發(fā)射極的電流,它實際上是發(fā)射結(jié)的反向飽和電流。
(4)直流電流放大系數(shù)β1(或hEF)這是指共發(fā)射接法,沒有交流信號輸入時,集電極輸出的直流電流與基極輸入的直流電流的比值,即:β1=Ic/Ib
2、交流參數(shù)
(1)交流電流放大系數(shù)β(或hfe)這是指共發(fā)射極接法,集電極輸出電流的變化量△Ic與基極輸入電流的變化量△Ib之比,即:β=△Ic/△Ib一般晶體管的β大約在10-200之間,如果β太小,電流放大作用差,如果β太大,電流放大作用雖然大,但性能往往不穩(wěn)定。
(2)共基極交流放大系數(shù)α(或hfb)這是指共基接法時,集電極輸出電流的變化是△Ic與發(fā)射極電流的變化量△Ie之比,即:α=△Ic/△Ie因為△Ic<△Ie,故α<1。高頻三極管的α>0.90就可以使用α與β之間的關(guān)系:α=β/(1+β)β=α/(1-α)≈1/(1-α)
(3)截止頻率fβ、fα當β下降到低頻時0.707倍的頻率,就是共發(fā)射極的截止頻率fβ;當α下降到低頻時的0.707倍的頻率,就是共基極的截止頻率fαofβ、fα是表明管子頻率特性的重要參數(shù),它們之間的關(guān)系為:fβ≈(1-α)fα
(4)特征頻率fT因為頻率f上升時,β就下降,當β下降到1時,對應(yīng)的fT是全面地反映晶體管的高頻放大性能的重要參數(shù)。
3、極限參數(shù)
(1)集電極最大允許電流ICM當集電極電流Ic增加到某一數(shù)值,引起β值下降到額定值的2/3或1/2,這時的Ic值稱為ICM。所以當Ic超過ICM時,雖然不致使管子損壞,但β值顯著下降,影響放大質(zhì)量。
(2)集電極----基極擊穿電壓BVCBO當發(fā)射極開路時,集電結(jié)的反向擊穿電壓稱為BVEBO。
(3)發(fā)射極-----基極反向擊穿電壓BVEBO當集電極開路時,發(fā)射結(jié)的反向擊穿電壓稱為BVEBO。
(4)集電極-----發(fā)射極擊穿電壓BVCEO當基極開路時,加在集電極和發(fā)射極之間的最大允許電壓,使用時如果Vce>BVceo,管子就會被擊穿。
(5)集電極最大允許耗散功率PCM集電流過Ic,溫度要升高,管子因受熱而引起參數(shù)的變化不超過允許值時的最大集電極耗散功率稱為PCM。管子實際的耗散功率于集電極直流電壓和電流的乘積,即Pc=Uce×Ic.使用時慶使Pc<PCM。PCM與散熱條件有關(guān),增加散熱片可提高PCM。
晶體三極管 - 特性曲線
晶體三極管
1、輸入特性其特點是:
1)當Uce在0-2伏范圍內(nèi),曲線位置和形狀與Uce有關(guān),但當Uce高于2伏后,曲線Uce基本無關(guān)通常輸入特性由兩條曲線(Ⅰ和Ⅱ)表示即可。
2)當Ube<UbeR時,Ib≈O稱(0~UbeR)的區(qū)段為“死區(qū)”當Ube>UbeR時,Ib隨Ube增加而增加,放大時,三極管工作在較直線的區(qū)段。
3)三極管輸入電阻,定義為:rbe=(△Ube/△Ib)Q點,其估算公式為:rbe=rb+(β+1)(26毫伏/Ie毫伏)rb為三極管的基區(qū)電阻,對低頻小功率管,rb約為300歐。
2、輸出特性
輸出特性表示Ic隨Uce的變化關(guān)系(以Ib為參數(shù)),它分為三個區(qū)域:截止區(qū)、放大區(qū)和飽和區(qū)。截止區(qū)當Ube<0時,則Ib≈0,發(fā)射區(qū)沒有電子注入基區(qū),但由于分子的熱運動,集電集仍有小量電流通過,即Ic=Iceo稱為穿透電流,常溫時Iceo約為幾微安,鍺管約為幾十微安至幾百微安,它與集電極反向電流Icbo的關(guān)系是:Icbo=(1+β)Icbo常溫時硅管的Icbo小于1微安,鍺管的Icbo約為10微安,對于鍺管,溫度每升高12℃,Icbo數(shù)值增加一倍,而對于硅管溫度每升高8℃,Icbo數(shù)值增大一倍,雖然硅管的Icbo隨溫度變化更劇烈,但由于鍺管的Icbo值本身比硅管大,所以鍺管仍然受溫度影響較嚴重的管,放大區(qū),當晶體三極管發(fā)射結(jié)處于正偏而集電結(jié)于反偏工作時,Ic隨Ib近似作線性變化,放大區(qū)是三極管工作在放大狀態(tài)的區(qū)域。飽和區(qū)當發(fā)射結(jié)和集電結(jié)均處于正偏狀態(tài)時,Ic基本上不隨Ib而變化,失去了放大功能。根據(jù)三極管發(fā)射結(jié)和集電結(jié)偏置情況,可能判別其工作狀態(tài)。
截止區(qū)和飽和區(qū)是三極管工作在開關(guān)狀態(tài)的區(qū)域,三極管和導通時,工作點落在飽和區(qū),三極管截止時,工作點落在截止區(qū)。
晶體三極管 - 產(chǎn)品檢測
晶體三極管
大功率晶體三極管的檢測
利用萬用表檢測中、小功率三極管的極性、管型及性能的各種方法,對檢測大功率三極管來說基本上適用。但是,由于大功率三極管的工作電流比較大,因而其PN結(jié)的面積也較大。PN結(jié)較大,其反向飽和電流也必然增大。所以,若像測量中、小功率三極管極間電阻那樣,使用萬用表的R×1k擋測量,必然測得的電阻值很小,好像極間短路一樣,所以通常使用R×10或R×1擋檢測大功率三極管。
普通達林頓管的檢測
用萬用表對普通達林頓管的檢測包括識別電極、區(qū)分PNP和NPN類型、估測放大能力等項內(nèi)容。因為達林頓管的E-B極之間包含多個發(fā)射結(jié),所以應(yīng)該使用萬用表能提供較高電壓的R×10K擋進行測量。
大功率達林頓管的檢測
檢測大功率達林頓管的方法與檢測普通達林頓管基本相同。但由于大功率達林頓管內(nèi)部設(shè)置了V3、R1、R2等保護和泄放漏電流元件,所以在檢測量應(yīng)將這些元件對測量數(shù)據(jù)的影響加以區(qū)分,以免造成誤判。具體可按下述幾
步驟進行
晶體三極管
A用萬用表R×10K擋測量B、C之間PN結(jié)電阻值,應(yīng)明顯測出具有單向?qū)щ娦阅?。正、反向電阻值?yīng)有較大差異。
B在大功率達林頓管B-E之間有兩個PN結(jié),并且接有電阻R1和R2。用萬用表電阻擋檢測時,當正向測量時,測到的阻值是B-E結(jié)正向電阻與R1、R2阻值并聯(lián)的結(jié)果;當反向測量時,發(fā)射結(jié)截止,測出的則是(R1+R2)電阻之和,大約為幾百歐,且阻值固定,不隨電阻擋位的變換而改變。但需要注意的是,有些大功率達林頓管在R1、R2、上還并有二極管,此時所測得的則不是(R1+R2)之和,而是(R1+R2)與兩只二極管正向電阻之和的并聯(lián)電阻值。
帶阻尼行輸出三極管的檢測
將萬用表置于R×1擋,通過單獨測量帶阻尼行輸出三極管各電極之間的電阻值,即可判斷其是否正常。具體測試原理,方法及步驟如下:
A將紅表筆接E,黑表筆接B,此時相當于測量大功率管B-E結(jié)的等效二極管與保護電阻R并聯(lián)后的阻值,由于等效二極管的正向電阻較小,而保護電阻R的阻值一般也僅有20~50,所以,二者并聯(lián)后的阻值也較??;反之,將表筆對調(diào),即紅表筆接B,黑表筆接E,則測得的是大功率管B-E結(jié)等效二極管的反向電阻值與保護電阻R的并聯(lián)阻值,由于等效二極管反向電阻值較大,所以,此時測得的阻值即是保護電阻R的值,此值仍然較小。
B將紅表筆接C,黑表筆接B,此時相當于測量管內(nèi)大功率管B-C結(jié)等效二極管的正向電阻,一般測得的阻值也較?。粚⒓t、黑表筆對調(diào),即將紅表筆接B,黑表筆接C,則相當于測量管內(nèi)大功率管B-C結(jié)等效二極管的反向電阻,測得的阻值通常為無窮大。
C將紅表筆接E,黑表筆接C,相當于測量管內(nèi)阻尼二極管的反向電阻,測得的阻值一般都較大,約300~∞;將紅、黑表筆對調(diào),即紅表筆接C,黑表筆接E,則相當于測量管內(nèi)阻尼二極管的正向電阻,測得的阻值一般都較小,約幾歐至幾十歐。
晶體三極管 - 工作狀態(tài)
1w紅外三極管
截止狀態(tài):當加在三極管發(fā)射結(jié)的電壓小于PN結(jié)的導通電壓,基極電流為零,集電極電流和發(fā)射極電流都為零,三極管這時失去了電流放大作用,集電極和發(fā)射極之間相當于開關(guān)的斷開狀態(tài),稱之為三極管處于截止狀態(tài)。
放大狀態(tài):當加在三極管發(fā)射結(jié)的電壓大于PN結(jié)的導通電壓,并處于某一恰當?shù)闹禃r,三極管的發(fā)射結(jié)正向偏置,集電結(jié)反向偏置,這時基極電流對集電極電流起著控制作用,使三極管具有電流放大作用,其電流放大倍數(shù)β=ΔIc/ΔIb,這時三極管處放大狀態(tài)。
飽和導通狀態(tài):當加在三極管發(fā)射結(jié)的電壓大于PN結(jié)的導通電壓,并當基極電流增大到一定程度時,集電極電流不再隨著基極電流的增大而增大,而是處于某一定值附近不怎么變化,這時三極管失去電流放大作用,集電極與發(fā)射極之間的電壓很小,集電極和發(fā)射極之間相當于開關(guān)的導通狀態(tài)。三極管的這種狀態(tài)我們稱之為飽和導通狀態(tài)。
根據(jù)三極管工作時各個電極的電位高低,就能判別三極管的工作狀態(tài),因此,電子維修人員在維修過程中,經(jīng)常要拿多用電表測量三極管各腳的電壓,從而判別三極管的工作情況和工作狀態(tài)。
晶體三極管 - 產(chǎn)品分類
金封鍺三極管
按生產(chǎn)工藝分:合金型、擴散型、抬面和平面型三極管。
按內(nèi)部結(jié)構(gòu)分:點接觸型和面接觸型三極管。
按工作頻率分:低頻三極管、高頻三極管、開關(guān)三極管。
按功率分:小功率三極管、中功率三極管、大功率三極管
按外形結(jié)構(gòu)分:小功率封裝、大功率封裝、塑料封裝等
晶體三極管 - 主要類別
三極管只有兩種類型,即PNP型和NPN型。判別時只要知道基極是P型材料還是N型材料即可。當用萬用電表R×1k檔時,黑表筆代表電源正極,如果黑表筆接基極時導通,則說明三極管的基極為P型材料,三極管即為NPN型。如果紅表筆接基極導通,則說明三極管基極為N型材料,三極管即為PNP型。
晶體三極管 - 基極判別
超聲波晶體三極管
三極管基極的判別:根據(jù)三極管的結(jié)構(gòu)示意圖,知道三極管的基極是三極管中兩個PN結(jié)的公共極,因此,在判別三極管的基極時,只要找出兩個PN結(jié)的公共極,即為三極管的基極。具體方法是將萬用表調(diào)至電阻擋的R×1k擋,先用紅表筆放在三極管的一只管腳上,用黑表筆去碰三極管的另兩只管腳,如果兩次全通,則紅表筆所放的管腳就是三極管的基極。如果一次沒找到,則紅表筆換到三極管的另一個管腳,再測兩次;如還沒找到,則紅表筆再換一下,再測兩次。如果還沒找到,則改用黑表筆放在三極管的一個管腳上,用紅表筆去測兩次看是否全通,若一次沒成功再換。這樣最多測量12次,總可以找到基極。
晶體三極管 - 判斷口訣
晶體三極管
三極管的管型及管腳的判別是電子技術(shù)初學者的一項基本功,為了迅速掌握測判方法,總結(jié)出四句口訣:“三顛倒,找基極;PN結(jié),定管型;順箭頭,偏轉(zhuǎn)大;測不準,動嘴巴。”
1.三顛倒,找基極
大家知道,三極管是含有兩個PN結(jié)的半導體器件。根據(jù)兩個PN結(jié)連接方式不同,可以分為NPN型和PNP型兩種不同導電類型的三極管。
測試三極管要使用萬用電表的歐姆擋,并選擇R×100或R×1k擋位。對于指針式萬用電表有,其紅表筆所連接的是表內(nèi)電池的負極,黑表筆則連接著表內(nèi)電池的正極。假定我們并不知道被測三極管是NPN型還是PNP型,也分不清各管腳是什么電極。測試的第一步是判斷哪個管腳是基極。這時,我們?nèi)稳蓚€電極(如這兩個電極為1、2),用萬用電表兩支表筆顛倒測量它的正、反向電阻,觀察表針的偏轉(zhuǎn)角度;接著,再取1、3兩個電極和2、3兩個電極,分別顛倒測量它們的正、反向電阻,觀察表針的偏轉(zhuǎn)角度。在這三次顛倒測量中,必然有兩次測量結(jié)果相近:即顛倒測量中表針一次偏轉(zhuǎn)大,一次偏轉(zhuǎn)??;剩下一次必然是顛倒測量前后指針偏轉(zhuǎn)角度都很小,這一次未測的那只管腳就是我們要尋找的基極。
2.PN結(jié),定管型
找出三極管的基極后,我們就可以根據(jù)基極與另外兩個電極之間PN結(jié)的方向來確定管子的導電類型。將萬用表的黑表筆接觸基極,紅表筆接觸另外兩個電極中的任一電極,若表頭指針偏轉(zhuǎn)角度很大,則說明被測三極管為NPN型管;若表頭指針偏轉(zhuǎn)角度很小,則被測管即為PNP型。
3.順箭頭,偏轉(zhuǎn)大
找出了基極b,另外兩個電極哪個是集電極c,哪個是發(fā)射極e呢?這時可以用測穿透電流ICEO的方法確定集電極c和發(fā)射極e。
(1)對于NPN型三極管,由NPN型三極管穿透電流的流向原理,用萬用電表的黑、紅表筆顛倒測量兩極間的正、反向電阻Rce和Rec,雖然兩次測量中萬用表指針偏轉(zhuǎn)角度都很小,但仔細觀察,總會有一次偏轉(zhuǎn)角度稍大,此時電流的流向一定是:黑表筆→c極→b極→e極→紅表筆,電流流向正好與三極管符號中的箭頭方向一致,所以此時黑表筆所接的一定是集電極c,紅表筆所接的一定是發(fā)射極e。
(2)對于PNP型的三極管,道理也類似于NPN型,其電流流向一定是:黑表筆→e極→b極→c極→紅表筆,其電流流向也與三極管符號中的箭頭方向一致,所以此時黑表筆所接的一定是發(fā)射極e,紅表筆所接的一定是集電極c。
4.測不出,動嘴巴
若在“順箭頭,偏轉(zhuǎn)大”的測量過程中,若由于顛倒前后的兩次測量指針偏轉(zhuǎn)均太小難以區(qū)分時,就要“動嘴巴”了。具體方法是:在“順箭頭,偏轉(zhuǎn)大”的兩次測量中,用兩只手分別捏住兩表筆與管腳的結(jié)合部,用嘴巴含住(或用舌頭抵住)基電極b,仍用“順箭頭,偏轉(zhuǎn)大”的判別方法即可區(qū)分開集電極c與發(fā)射極e。其中人體起到直流偏置電阻的作用,目的是使效果更加明顯。
晶體三極管 - 基本放大電路
基本放大電路
基本放大電路是放大電路中最基本的結(jié)構(gòu),是構(gòu)成復雜放大電路的基本單元。它利用雙極型半導體三極管輸入電流控制輸出電流的特性,或場效應(yīng)半導體三極管輸入電壓控制輸出電流的特性,實現(xiàn)信號的放大。本章基本放大電路的知識是進一步學習電子技術(shù)的重要基礎(chǔ)。
基本放大電路一般是指由一個三極管或場效應(yīng)管組成的放大電路。從電路的角度來看,可以將基本放大電路看成一個雙端口網(wǎng)絡(luò)。放大的作用體現(xiàn)在如下方面:
1.放大電路主要利用三極管或場效應(yīng)管的控制作用放大微弱信號,輸出信號在電壓或電流的幅度上得到了放大,輸出信號的能量得到了加強。
2.輸出信號的能量實際上是由直流電源提供的,只是經(jīng)過三極管的控制,使之轉(zhuǎn)換成信號能量,提供給負載。
共射組態(tài)基本放大電路的組成。
共射組態(tài)基本放大電路是輸入信號加在加在基極和發(fā)射極之間,耦合電容器C1和Ce視為對交流信號短路。輸出信號從集電極對地取出,經(jīng)耦合電容器C2隔除直流量,僅將交流信號加到負載電阻RL之上。放大電路的共射組態(tài)實際上是指放大電路中的三極管是共射組態(tài)。
在輸入信號為零時,直流電源通過各偏置電阻為三極管提供直流的基極電流和直流集電極電流,并在三極管的三個極間形成一定的直流電壓。由于耦合電容的隔直流作用,直流電壓無法到達放大電路的輸入端和輸出端。
當輸入交流信號通過耦合電容C1和Ce加在三極管的發(fā)射結(jié)上時,發(fā)射結(jié)上的電壓變成交、直流的疊加。放大電路中信號的情況比較復雜,各信號的符號規(guī)定如下:由于三極管的電流放大作用,ic要比ib大幾十倍,一般來說,只要電路參數(shù)設(shè)置合適,輸出電壓可以比輸入電壓高許多倍。uCE中的交流量有一部分經(jīng)過耦合電容到達負載電阻,形成輸出電壓。完成電路的放大作用。
由此可見,放大電路中三極管集電極的直流信號不隨輸入信號而改變,而交流信號隨輸入信號發(fā)生變化。在放大過程中,集電極交流信號是疊加在直流信號上的,經(jīng)過耦合電容,從輸出端提取的只是交流信號。因此,在分析放大電路時,可以采用將交、直流信號分開的辦法,可以分成直流通路和交流通路來分析。
放大電路的組成原則:
1.保證放大電路的核心器件三極管工作在放大狀態(tài),即有合適的偏置。也就是說發(fā)射結(jié)正偏,集電結(jié)反偏。
2.輸入回路的設(shè)置應(yīng)當使輸入信號耦合到三極管的輸入電極,形成變化的基極電流,從而產(chǎn)生三極管的電流控制關(guān)系,變成集電極電流的變化。
3.輸出回路的設(shè)置應(yīng)該保證將三極管放大以后的電流信號轉(zhuǎn)變成負載需要的電量形式(輸出電壓或輸出電流)。
晶體三極管 - 判斷好壞
晶體三極管
晶體三極管是電子電路中最常見的器件之一。但是判定三極管的好壞及極性是初學者常碰到的一個難點。
利用數(shù)字萬用表可以判別三極管的極性和好壞。將數(shù)字萬用表轉(zhuǎn)到二極管擋時,紅表筆代表正電極,用紅表筆去接三極管的某一管腳(假設(shè)是基極),用黑筆分別接另外兩個管腳,如果表的液晶屏上兩次都顯示有零點幾的數(shù)字(鍺管為0.3左右,硅管為0.7左右),則此管應(yīng)為NPN管,且紅表筆所接的那一個管腳是基極。如果兩次所顯的為“OL”,則紅表筆所接的那一個管腳便是PNP型管的基極。
在判別出管子的型號和基極的基礎(chǔ)上,可以再判別發(fā)射極和集電極。仍用二極管擋。對于NPN管,令紅表筆接其“B”極,黑表筆分別接另兩個腳上,兩次測得的極間數(shù)字中,其值微高的那一極為“E”極,其值低一些的那極為“C”極。如果是PNP管,令黑表筆接其“B”極,同樣所得數(shù)據(jù)高的為“E”極,數(shù)據(jù)低一些的為“C”極。例如:用紅表筆接C9018的中間那個腳(B極),黑表筆分別接另外兩個管腳,可得0.719、0.731兩個值。其中0.719為“B與“C”之間的測試值,0.731為“D”與“K”之間的測試值。
判別三極管的好壞時,只要查一下三極管各PN結(jié)是否損壞,通過數(shù)字萬用表測量其發(fā)射極、集電極的正向電壓和反向電壓來判定。如果測得的正向電壓與反向電壓相似且?guī)缀鯙榱?,或正向電壓為?/span>OL”,說明三極管已經(jīng)短路或斷路。
用此法已測得:A1078(PNP)、C3332(NPN)、C9545(NPN)、N222A(NPN)、A733(PNP)、3904、3906及90xx系列,如:9012、9013、9014、9015、9016、9018等晶體管。
測試的三極管都為TO-92封裝。只要環(huán)境溫度在5℃-35℃的條件下測試都正確。文中的“OL”是指萬用表不能正常顯示數(shù)字時出現(xiàn)的一固定符號,出現(xiàn)什么樣的固定符號,要看是使用什么牌子的萬用表而定。如有的萬用表則會顯示一固定符號“1”。本文數(shù)據(jù)為采用FLUKE數(shù)字萬用表測得。
晶體三極管 - 主要特點
晶體三極管主要用于放大電路中起放大作用,在常見電路中有三種接法。為了便于比較,將晶體管三種接法電路
晶體三極管 - 注意事項
大功率三極管
半導體雙極型三極管又稱晶體三極管,通常簡稱晶體管或三極管,它是一種電流控制電流的半導體器件,可用來對微弱信號進行放大和作無觸點開關(guān)。它具有結(jié)構(gòu)牢固、壽命長、體積校、耗電省等一系列獨特優(yōu)點,故在各個領(lǐng)域得到廣泛應(yīng)用。
鍺三極管的增益大,頻率響應(yīng)好,尤其適用于低壓線路。硅三極管的反向漏電流小,耐壓高,溫度漂移小,且能在較高的溫度下工作和承受較大的功率損耗。
(1)加到管上的電壓極性應(yīng)正確。PNP管的發(fā)射極對其他兩電極是正電位,而NPN管則是負電位。
(2)不論是靜態(tài)、動態(tài)或不穩(wěn)定態(tài)(如電路開啟、關(guān)閉時),均須防止電流、電壓超出最大極限值,也不得有兩項或兩項以上多數(shù)同時達到極限值。
(3)選用三極管主要應(yīng)注意極性和下述參數(shù):PCM、ICM、BUCEO、BUEBO、ICBO、β、fT和fβ。因有BUCBO>BUCES>BUCER>BUCEO,因此,只要BUCEO滿足要求就可以了。一般高頻工作時要求fT=(5~10)f,f為工作頻率。開關(guān)電路工作時應(yīng)考慮三極管的開關(guān)參數(shù)。
(4)三極管的替換。只要管子的基本參數(shù)相同,就能替換,性能高的可替換性能低的。低頻小功率管,任何型號的高、低頻小功率管都可替換它,但fT不能太高。只要fT符合要求,一般就可以代替高頻小功率管,但應(yīng)選內(nèi)反饋小的管子,hFE>20即可。對低頻大功率管,一般只要PCM、ICM、BUCEO符合要求即可,但應(yīng)考慮hFE、UCES的影響。應(yīng)滿足電路中有特殊要求的參數(shù)(如NF、開關(guān)參數(shù))。此外,通常鍺、硅管不能互換。
(5)工作于開關(guān)狀態(tài)的三極管,因BUEBO一般較低,所以應(yīng)考慮是否要在基極回路加保護線路,以防止發(fā)射結(jié)擊穿;若集電極負載為感性(如繼電器的工作線圈),則必須加保護線路(如線圈兩端并聯(lián)續(xù)流二極管),以防線圈反電動勢損壞三極管。
(6)管子應(yīng)避免靠近熱元件,減小溫度變化和保證管殼散熱良好。功率放大管在耗散功率較大時,應(yīng)加散熱板(磨光的紫銅板或鋁板)。管殼與散熱板應(yīng)緊密貼牢。散熱裝置應(yīng)垂直安裝,以利于空氣自然對流。
三極管是由2塊N型半導體中間夾著一塊P型半導體所組成,發(fā)射區(qū)與基區(qū)之間形成的PN結(jié)稱為發(fā)射結(jié),而集電區(qū)與基區(qū)形成的PN結(jié)稱為集電結(jié),三條引線分別稱為發(fā)射極e、基極b和集電極。 當b點電位高于e點電位零點幾伏時,發(fā)射結(jié)處于正偏狀態(tài),而C點電位高于b點電位幾伏時,集電結(jié)處于反偏狀態(tài),集電極電源Ec要高于基極電源Ebo。 在制造三極管時,有意識地使發(fā)射區(qū)的多數(shù)載流子濃度大于基區(qū)的,同時基區(qū)做得很薄,而且,要嚴格控制雜質(zhì)含量,這樣,一旦接通電源后,由于發(fā)射結(jié)正確,發(fā)射區(qū)的多數(shù)載流子(電子)極基區(qū)的多數(shù)載流子(控穴)很容易地截越過發(fā)射結(jié)構(gòu)互相向反方各擴散,但因前者的濃度基大于后者,所以通過發(fā)射結(jié)的電流基本上是電子流,這股電子流稱為發(fā)射極電流Ie。 由于基區(qū)很薄,加上集電結(jié)的反偏,注入基區(qū)的電子大部分越過集電結(jié)進入集電區(qū)而形成集電集電流Ic,只剩下很少(1-10[%])的電子在基區(qū)的空穴進行復合,被復合掉的基區(qū)空穴由基極電源Eb重新補紀念給,從而形成了基極電流Ibo根據(jù)電流連續(xù)性原理得: Ie=Ib+Ic 這就是說,在基極補充一個很小的Ib,就可以在集電極上得到一個較大的Ic,這就是所謂電流放大作用,Ic與Ib是維持一定的比例關(guān)系,即: β1=Ic/Ib 式中:β--稱為直流放大倍數(shù), 集電極電流的變化量△Ic與基極電流的變化量△Ib之比為: β= △Ic/△Ib 式中β--稱為交流電流放大倍數(shù),由于低頻時β1和β的數(shù)值相差不大,所以有時為了方便起見,對兩者不作嚴格區(qū)分,β值約為幾十至一百多。 三極管作為電流放大器件,在實際使用中常常利用其電流放大作用,通過電阻轉(zhuǎn)變?yōu)殡妷悍糯笞饔谩?/span>
三極管的種類與結(jié)構(gòu) 三極管分很多種,按功率大小可分為大功率管和小功率管;按電路中的工作頻率可分為高頻管和低頻管;按半導體材料不同可分為硅管和鍺管;按結(jié)構(gòu)不同可分為NPN管和PNP管。無論是NPN型還是PNP型都分為三個區(qū),分別稱為發(fā)射區(qū)、基區(qū)和集電區(qū),由三個區(qū)各引出一個電極,分別稱為發(fā)射極(E)、基極(B)和集電極(C),發(fā)射區(qū)和基區(qū)之間的PN結(jié)稱為發(fā)射結(jié),集電區(qū)和基區(qū)之間的PN結(jié)稱為集電結(jié)。其中發(fā)射極箭頭所示方向表示發(fā)射極電流的流向。在電路中,晶體管用字符T表示。具有電流放大作用的三極管,在內(nèi)部結(jié)構(gòu)上具有其特殊性,這就是:其一是發(fā)射區(qū)摻雜濃度大于集電區(qū)摻雜濃度,集電區(qū)摻雜濃度遠大于基區(qū)摻雜濃度;其二是基區(qū)很薄,一般只有幾微米。這些結(jié)構(gòu)上的特點是三極管具有電流放大作用的內(nèi)在依據(jù)。